
姓名:吕天光
出生年月: 1990年5月
职称: 教授
职务: 教师
Email: tlu@sdu.edu.cn,tlu@seas.harvard.edu
系所与团队:
电力系统研究所
电力系统经济运行团队
山东省数字智慧能源创新重点实验室
学术身份:
1. 教授、博士生导师,齐鲁青年学者,山东省数字智慧能源创新重点实验室副主任
2. 国家自然科学联合基金(重点)项目负责人;中国工程院“中国工程前沿杰出青年学者”;中国科协“青年人才托举工程”入选者;首届山东省优秀青年科学基金(海外)获得者
3. 《IEEE Transactions on Power Delivery》副编辑;《Protection and Control of Modern Power Systems》编委;《CSEE Journal of Power and Energy Systems》青年学科编辑;《IET Renewable Power Generation》副编辑;《电力自动化设备》、《中国电力》青年编委;多个国内外专刊特约编辑
4. IEEE PES输配电技术委员会秘书;IEEE PC57.145 工作组秘书;中国电机工程学会区块链专委会委员;中国电工技术学会主动配电网及分布式电源专委会委员;中国能源研究会电能技术专委会委员;中国电力科学研究院期刊中心青年专家团成员;山东省国家知识产权保护中心人才专家
5. IEEE/IET等多个国际会议的会议主席/程序委员会主席/出版主席/分会主席/特邀报告;Nature子刊等十余个国内外顶级期刊审稿人
6. 国际注册工程师(CEng);IEEE Senior Member;中国电机工程学会/中国电工技术学会高级会员
主要工作经历:
2025至今,山东省数字智慧能源创新重点实验室 副主任
2020至今,山东大学 教授
2020至今,美国哈佛大学(Harvard University) 客座研究员
2018-2020,美国哈佛大学(Harvard University) 博士后
2016-2017,美国德州大学阿灵顿分校/爱荷华州立大学/南卫理公会大学(The University of Texas at Arlington/Iowa State University/Southern Methodist University) 访问学者
2015,北京ABB有限公司 项目工程师
2013-2018,上海交通大学 电气工程 博士
2016-2018,美国佐治亚理工学院(Georgia Institute of Technology) 计算机科学 硕士
2009-2013,山东大学 电气工程 学士
研究方向:
电力系统运行优化与智能感知,智能配电分层调控,可再生能源并网,电力市场,能源经济与政策
学术著作:
录用/发表包括Nature子刊(一作)在内的SCI/EI论文100余篇,入选ESI高被引/热点论文10篇次,出版一作、编委专著3部,授权国内/国际专利20余项,主编1项国际标准,参编1 项国家标准。每年部分成果如下(*为通讯作者):
1. 专著
[1]Tianguang Lu, M. Yang, Y. Guo, Q. Ai, R. Hao. “Operation modeling and collaborative regulation of distributed energy grid clusters.” Springer, 2025.
[2]吕天光,艾芊. “微电网群分层调控技术.” 上海科学技术出版社,2022.
2. 期刊论文
[1] X. Yi,Tianguang Lu*, Y. Li, Q. Ai. “Collaborative planning of multi-energy systems integrating complete hydrogen energy chain.” Renewable and Sustainable Energy Reviews, 2025. (发表,SCI,IF:16.3)
[2]Tianguang Lu*, X. Yi, J. Li, S. Wu. “Collaborative planning of integrated hydrogen energy chain multi-energy systems: A review.” Applied energy, 2025.(发表,SCI,IF:11)
[3] H. Liu,Tianguang Lu*, Y. Yang, Y. Guo, Q. Wu, X. Xu, H. Zeng. “Blockchain-based optimization of operation and trading among multiple microgrids considering market fairness.” International Journal of Electrical Power & Energy Systems, 2025. (发表,SCI,IF:5)
[4] 吴钦政,吕天光*,刘卫东,高扬,武少聪,张宇昊,郭宇. “机理-数据融合驱动的变压器匝间故障诊断研究.” 中国电机工程学报, 2025.(发表,EI)
[5] E. Yaghoubi, E. Yaghoubi, A. Khamees, D. Razmi,Tianguang Lu*. “A systematic review and meta-analysis of machine learning, deep learning, and ensemble learning approaches in predicting EV charging behavior.” Engineering Applications of Artificial Intelligence, 2024.(发表,SCI,IF:8)
[6] J. Li,Tianguang Lu*, X. Yi, R. Hao, Q. Ai, Y. Guo, M. An, S. Wang, X. He, Y. Li. “Concentrated solar power for a reliable expansion of energy systems with high renewable penetration considering seasonal balance.” Renewable Energy, 2024.(发表,SCI,IF:9.1)
[7] J. Li,Tianguang Lu*, X. Yi, M. An, R. Hao. “Energy systems capacity planning under high renewable penetration considering concentrating solar power.” Sustainable Energy Technologies and Assessments, 2024.(发表,SCI,IF:7)
[8] H. Cheng,Tianguang Lu*, R. Hao, J. Li, Q. Ai. “Incentive-based demand response optimization method based on federated learning with a focus on user privacy protection.” Applied Energy, 2024.(发表,SCI,IF:11)
[9] S. Wang,Tianguang Lu*, R. Hao, F. Wang, T. Ding, J. Li, X. He, Y. Guo, X. Han. “An Identification Method for Anomaly Types of Active Distribution Network Based on Data Mining.” IEEE Transactions on Power Systems, 2023.(发表,SCI,IF:7.2)
[10] D. Razmi,Tianguang Lu*, B. Papari, E. Akbari, G. Fathi and M. Ghadamyari. “An overview on power quality issues and control strategies for distribution networks with the pres ence of distributed generation resources.” IEEE Access, 2023.(发表,SCI,IF:3.6)
[11]Tianguang Lu, X. Chen, M. B. McElroy, C. P. Nielsen, Q. Wu, H. He, and Q. Ai. “A reinforcement learning-based decision system for electricity pricing plan selection by smart grid end users.” IEEE Transactions on Smart Grid,2022. (发表,SCI,IF:9.8)
[12]Tianguang Lu*, R. Hao, Q. Ai, and H. He. “Distributed online dispatch for microgrids using hierarchical reinforcement learning embedded with operation knowledge.” IEEE Transactions on Power Systems,2022. (发表,IF:7.2)
[13] R. Hao,Tianguang Lu*, Q. Ai, H. He. “Data-oriented distributed demand response optimization with global inequality constraints based on multi-agent system.” International Journal of Electrical Power & Energy Systems, 2021.(发表,SCI,IF:5)
[14]Tianguang Lu, P. Sherman, X. Chen, S. Chen, X. Lu, and M. B. McElroy. “India’s potential for integrating solar and on- and offshore wind power into its energy system.” Nature Communications, 2020. (发表,nature子刊,IF:15.7)
[15] R. Hao,Tianguang Lu*, and Q. Ai. “Distributed online learning and dynamic robust standby dispatch for networked microgrids.” Applied Energy, 2020.(发表,SCI,IF:11)
[16] F. Xiao,Tianguang Lu*, Q. Ai, X. Wang, X. Chen, S. Fang, and Q. Wu. “Design and implementation of a data-driven approach to visualizing power quality.” IEEE Transactions on Smart Grid, 2020.(发表,SCI,IF:9.8)
[17] S. Yin, Q. Ai, Z. Li, Y. Zhang, andTianguang Lu*. “Energy management for aggregate prosumers in a virtual power plant: A robust Stackelberg game approach.” International Journal of Electrical Power & Energy Systems, 2020.(发表,SCI,IF:5)
[18]Tianguang Lu, Z. Wang, J. Wang, Q. Ai, and C. Wang. “A data-driven stackelberg market strategy for demand response-enabled distribution systems.” IEEE Transactions on Smart Grid, 2019.(发表,SCI,IF:9.8)
[19] R. Hao,Tianguang Lu*, Q. Wu, X. Chen, and Q. Ai. “Distributed piecewise approximation economic dispatch for regional power systems under non-ideal communication.” IEEE Access, 2019.(发表,SCI,IF:3.6)
[20] Y. Zhang, Q. Ai, F. Xiao, R. Hao, andTianguang Lu*. “Typical wind power scenario generation for multiple wind farms using conditional improved Wasserstein generative adversarial network.” International Journal of Electrical Power & Energy Systems, 2019.(发表,SCI,IF:5)
[21] F. Xiao,Tianguang Lu, M. Wu, and Q. Ai. “Maximal overlap discrete wavelet transform and deep learning for robust denoising and detection of power quality disturbance.” IET Generation Transmission & Distribution, 2019.(发表,SCI,IF:2.6)
[22] F. Shen, J. C. López, Q. Wu, M. J. Rider,Tianguang Lu, N. D. Hatziargyriou. “Distributed self-healing scheme for unbalanced electrical distribution systems based on alternating direction method of multipliers.” IEEE Transactions on Power Systems, 2019.(发表,SCI,IF:7.2)
[23] H. He, D. Luo, W. Lee, Z. Zhang, Y. Cao, andTianguang Lu. “A contactless insulator contamination levels detecting method based on infrared images features and RBFNN.” IEEE Transactions on Industry Applications, 2019.(发表,SCI,IF:4.5)
[24]Tianguang Lu*, Q. Ai, and Z. Wang. “Interactive game vector: A stochastic operation-based pricing mechanism for smart distribution systems with coupled-microgrid.” Applied Energy, 2018.(发表,SCI,IF:11)
[25]Tianguang Lu, W. Lee, Q. Ai, and S. Lu. “A priority decision making-based biding strategy for interactive aggregators.” IEEE Transactions on Industry Applications, 2018.(发表,SCI,IF:4.5)
[26]Tianguang Lu*, Z. Wang, Q. Ai, and W. Lee. “Interactive model for energy management of clustered microgrids.” IEEE Transactions on Industry Applications, 2017.(发表,SCI,IF:4.5)
[27]Tianguang Lv* and Q. Ai. “Interactive energy management of networked microgrids-based active distribution system considering large-scale integration of renewable energy resources.” Applied Energy, 2016.(发表,SCI,IF:11)
[28]Tianguang Lv*, Q. Ai, and Y. Zhao. “A bi-level multi-objective optimal operation of grid-connected microgrids.” Electric Power Systems Research, 2016.(发表,SCI,IF:4.2)
[29] K. Yu, S. Wang, Q. Ai, J. Ni, andTianguang Lv. “Analysis and optimization of droop controller for microgrid system based on small-signal dynamic model.” IEEE Transactions on Smart Grid, 2016.(发表,SCI,IF:9.8)
[30]吕天光*,艾芊,孙树敏,程艳,赵媛媛. “含多微网的主动配电系统综合优化运行行为分析与建模.” 中国电机工程学报, 2016.(发表,EI)
部分获奖:
2025,日内瓦国际发明展金奖首位
2024,中国工程院“中国工程前沿杰出青年学者”
2024,中国产学研合作创新奖
2023,新疆维吾尔自治区科技进步二等奖首位
2023,《电机工程学报》优秀审稿专家
2022,中国电力科技创新奖二等奖
2021,中国电力科技创新奖一等奖首位
2021,山东电力科学技术进步奖三等奖
2021、2022,《电网技术》优秀审稿专家
2020,山东电机工程学会五四优秀青年科技工作者
2019,IEEE工业应用协会最佳论文奖
2019,上海交通大学优秀博士学位论文
2017,IEEE工业应用协会最佳论文奖
2017,中国电机工程学报年度优秀作者
2014,山东省优秀学位论文
主要科研项目:
[1]. 国家自然基金
[2]. 山东省优秀青年科学基金(海外)
[3]. 中国科协“青年人才托举工程”
[4]. 国网总部科技项目
[5]. 美国能源部研究项目
[6]. China 2030/2050: Energy and Environmental Challenges for the Future,HarvardGlobal Institute
[7]. 山东大学“齐鲁青年学者”建设项目
招生类型:
学术型和专业型的硕士/博士研究生。
课题组与国内外著名高校和研究机构具有良好合作关系,关注学科交叉。有志于攻读相关研究方向的硕士/博士研究生以及科研助理/博士后,请邮件联系